Notes - Solving Literal Equations

•	Literal Equations are	Each
	variable represents something specific.	

Ex:
$$A = \frac{1}{2} b h$$
 $A = ____ b = ___ h = ____$

• When solving a **literal equation**, use the same steps you use to solve other equations. Remember to solve an equation, we use ______.

Example #1	Steps
Solve for x:	
$\mathbf{a}x + \mathbf{b} = \mathbf{c}$	1. Move <i>b</i>
ax = c - b	2. Move <i>a</i>
x =	3. x is what we are solving for and it stands alone.

Application Problem Shoe sizes and foot length are related by the formula $S = 3F - 24$, where S represents the shoe size and F represents the length of the foot, in inches. Solve the formula for F .		
S = 3F - 24		

Application Problem

Brandon knows that his truck route from Illinois to Tennessee is 430 miles long. He also knows that Distance = rate • time (D = rt). How long will his route take if he averages a speed of 50 mi/hr? Start by first solving the formula for time.

Solution:	Steps:
D = rt	solve for t (time)
$\frac{D}{r} = \frac{rt}{r}$	
$\frac{D}{r} = t$	
$\frac{430}{50} = 8.6$	

You try:

1.
$$P = 2l + 2w$$
 Solve for w

2.
$$V = (3k)/t$$
 Solve for t

3.
$$Q = (c + d)/2$$
 Solve for d

4.
$$R = 3a + 5c$$
 Solve for a

Notes - Solving Literal Equations – Teacher Notes

• **Literal Equations** are equations with . Each variable represents something specific.

Ex:
$$A = \frac{1}{2} b h$$
 A= Area b= base h= height

 When solving a literal equation, use the same steps as you would use to solve other equations. Remember to solve an equation, we use inverse operations.

Example #1	Steps
Solve for <i>x</i> :	
ax + b = c $-b - b$	1. Move <i>b</i> (the opposite of add is subtract)
$\frac{ax}{a} = \frac{c - b}{a}$	2. Move <i>a</i> (the opposite of multiply is divide)
$x = \frac{c - b}{a}$	3. <i>x</i> is what we are solving for and it stands alone.

Application Problem		
Shoe sizes and foot length are related by the formula $S = 3F - 24$, where S represents the shoe size and F represents the length of the foot, in inches. Solve the formula for F .		
Solution:	Steps:	
S = 3F - 24	add 24 to both sides	
S+24=3F	divide both sides by 3	
$\frac{S+24}{3}=\frac{3F}{3}$	simplify	
$\frac{S+24}{3}=F$		

Application Problem

Brandon knows that his truck route from Illinois to Tennessee is 430 miles long. He also knows that Distance = rate • time (D = rt). How long will his route take if he averages a speed of 50 mi/hr? Start by first solving the formula for time.

Solution:	Steps:
D = rt	solve for t (time)
$\frac{D}{r} = \frac{rt}{r}$	
$\frac{D}{r} = t$	substitute 430 in for D and 50 in for r and solve.
$\frac{430}{50} = 8.6$	It will take Brandon 8.6 hours.

You try:

1.
$$P = 2I + 2w$$
 Solve for w

2.
$$V = (3k)/t$$
 Solve for t

$$W=(P-2I)/2$$

$$t=(3k)/V$$

3.
$$Q = (c + d)/2$$
 Solve for d

4.
$$R = 3a + 5c$$
 Solve for a

$$d=2Q-c$$

$$a=(R-5c)/3$$