Difference of squares

You may remember multiplying out certain expressions using F.O.I.L. to get an answer as follows:

$$(x+3)(x-3) = x^2 - 3x + 3x - 9 = x^2 - 9$$

 $x^2 - 9$ is called "a difference of squares" because both terms are squared ($x \cdot x = x^2$ and $3 \cdot 3 = 9$) and the difference between them is subtraction.

Learn to recognize difference of squares. Sometimes they are hidden and you need to factor first.

Example: Factor the following completely: $5n^2 - 80$ Solve: Factor out the 5 to get $5(n^2 - 16)$. $(n^2 - 16)$ is a difference of squares which is (n+4)(n-4). So $5n^2 - 80$ factors to 5(n+4)(n-4).

Check: F.O.I.L. then distribute your answer to check to see if you get the original problem.

Practice factoring completely below. 1. $x^2 - 64$:

Answer:

2. $x^2 - 121$:

Ansv	ver:	 	
2	25		

3. $x^2 - 25$:

Answer: _____

4. $x^2 - 169$:

Answer: ______ 5. $x^2 - 1$:

Answer: _____

6. $3x^2 - 27$:

Answer: _____

7. $2x^2 - 50$:

Answer: _____

8. $4x^3 - 36x$:

Answer: _____

9. $9x^2 - 16$:

Answer: _______ 10. $9x^2 - 100$:

Answer:

12. $16x^2 - 25y^2$:

Answer:

13. If Ann correctly factors an expression that is the difference of two perfect squares, her factors could be which one of the following: (2x+y)(x-2y), (2x+3y)(2x-3y), (x-4)(x-4) or (2y-5)(y-5). Explain the reason for your answer.