1.7
 Solve Absolute Value Equations and Inequalities

Goal - Solve absolute value equations and inequalities.

Your Notes

VOCABULARY
Absolute value The absolute value of a number x, written $|x|$, is the distance the number is from 0 on a number line.

Extraneous solution An apparent solution that must be rejected because it does not satisfy the original equation.

INTERPRETING ABSOLUTE VALUE EQUATIONS

Equation $\quad|x|=|x-0|=k$
Meaning The distance between x and 0 is k.
Graph

Solutions $\quad x-0=-k$ or $x-0=k$
$x=\underline{-k}$ or $x=\underline{k}$
Equation $\quad|x-b|=k$
Meaning The distance between x and b is \qquad
Graph

Solutions $\quad x-b=-k$ or $x-b=k$

$$
x=\underline{b-k} \text { or } x=b+k
$$

EXAMPLE 1 Solve a simple absolute value equation

Solve $|x-5|=7$. Graph the solution.

EXAMPLE 2

Solve $|5 x-10|=45$.

EXAMPLE 3 Check for extraneous solutions

Always check your solutions in the original equation to make sure that they are not extraneous.

Solve $|2 x+12|=C$. Check for extraneous solutions.

GUIDED PRACTICE for Examples 1,2 and 3

Solve the equation. Check for extraneous solutions.
4. $|3 x-2|=13$

Solve the equation. Check for extraneous solutions.
5. $|2 x+5|=3 x$

Solve the equation, Check for extraneous solutions.

$$
\begin{aligned}
& \text { 6. } \quad-16 x^{3}-1 \quad-\frac{8}{3}+\frac{27}{3}=19 \\
& 4 x-1=2 x+9 \quad 4 x-1=-(2 x+9) \\
& 2 x-1=9 \\
& -4 x-1=-2 x-9 \\
& \begin{array}{r}
2 x=10 \\
x=5
\end{array} \\
& 6 x-1=-9 \\
& \frac{6 x+1+1}{6 x=-8} \\
& x=-\frac{4}{3}
\end{aligned}
$$

EXAMPLE 4 Solve an inequality of the form $|a x+b|>c$ or
Solve $|4 x+5|>13$. Then graph the solution.
$\begin{array}{cc}4 x+5>13 & 4 x+5<-13 \\ -5 & -5 \\ -5\end{array}$

GUIDED PRACTICE

for Example 4

Solve the inequality. Then graph the solution.
7. $|x+4| \geq 6$

Solve the inequality. Then graph the solution.
9. $|3 x+5| \geq 10$

GUIDED PRACTICE for Examples 5 and 6

Solve the inequality. Then graph the solution.
10. $|x+2|<6$

Solve the inequality. Then graph the solution.
12. $|7-x| \leq 4$

EXAMPLE 5) Solve an inequality of the form $|a x+b| \leq c$
Baseball A professional baseball should weigh 5.125 ounces, with a tolerance of 0.125 ounce. Write and solve an absolute value inequality that describes the acceptable weights for a baseball.

$$
\begin{aligned}
& \mid x \text { eights for a baseball. } \begin{array}{l}
\text { target } \\
\text { value l }
\end{array} \leq \text { tolerance } \\
& |x-5.125| \leq .125 \\
& \begin{array}{l}
x-5.125 \leq .125 \quad x-5.1255 .125 \\
\frac{+5.125}{4.125} \\
x \leq 5.25
\end{array} x \geq 5.0
\end{aligned}
$$

EXAMPLE 6 Write a range as an absolute value inequality

Gymnastics

The thickness of the mats used in the rings, parallel bars, and vault events must be between 7.5 inches and 8.25 inches, inclusive. Write an absolute value inequality
 describing the acceptable mat thicknesses.

$$
7.25 \leqslant x \leqslant 8.25
$$

